-->

一站式装修网


60平方米用几组地热管最佳(国家标准80多平的房子地热管应该是几根)

时间:2023-09-07 作者:娅碧


国家标准80多平的房子地热管应该是几根

国家标准80多平的房子地热管应该是4-5根。

80多平方的房子地暖面积在60平方左右,而地暖规定一个回路不应超过90米的地暖管,也就是15平方左右,所以是4-5个回路。

地暖管间距根据供暖条件和房间格局的不同,设计范围在100MM-300MM之间,以沈阳地区为例,一般管材间距在200MM左右。

扩展资料:

使用地热管注意事项:

管间距不能太大,而且管间距要控制到比较均匀,最好能用预制管槽的模块来固定住,卡钉式固定管,管间距一定要严格控制,通常情况下,20管的话,管间距控制在20厘米最佳,16管的话管间距控制在15厘米最佳。

传统地暖铺设,水电路改造没有多么重要,只要铺设反射膜,然后就在上面盘管,盘管的方法有平行型和回字型。传统铺设最好采用回子型铺设,因为这样便于地暖管之间供回水热量的互补,回子型地暖管是两进水管夹一个回水管。在管子拐角的地方一定要处理得当,不要折了管子。

参考资料来源:百度百科-地热采暖

140平方米的房子应该铺几路地暖

不够。

按《地面辐射采暖规程》1路最多可盘管材120米,如果按1平方4米管的话,就是30平方一路。140除30,=4。5路

但是个人装地暖是,

室内温度相关因素:

在水温60度时,盘管越密,水流速度越快,回路越短,则温度越高

所以,基于此,我们在设计时,一般是设计15平方一个回路。

140除15=9路。

OK

这个是小户型66平方的,我们设计了四路

浅层地热能的国内外研究利用现状与发展

一、国外研究利用现状与发展趋势

1.早期发展阶段

浅层地热能的研究与开发利用是随着热泵技术的研究与开发而兴起的。早在186年前(1824年)法国物理学家卡诺奠定了热泵理论基础。之后英国的物理学家焦耳论证了改变气体的压力引起温度变化的原理。英国勋爵汤姆逊教授首先提出了“热量倍增器”可以供暖的设想。1912年,瑞士苏黎世已成功安装了一套以河水作为低品位热源的热泵设备用于供暖,并以此申报专利,这就是早期的水源热泵系统,也是世界上第一个水源热泵系统。

在此之后的几十年,地源热泵基本处于实验研究阶段,并先后有地表水源热泵、地下水源热泵及土壤源热泵系统的问世与发展。20世纪30年代地表水源热泵系统问世,是地源热泵中最早使用的热泵系统形式之一。欧洲第一台较大的热泵装置是1938~1939年间在瑞士苏黎世市政大厅投入运行的,它以河水作为热源,供热能力175kW;20世纪40~50年代,瑞士、英国早期使用的地表水源热泵地下水源热泵系统除了用于建筑物采暖外,还用于游泳池加热和人造丝厂工艺加热和鞋厂空调等。随后欧洲其他一些国家也开始安装地表水源热泵系统,热泵系统的供热量不断增大,性能系数也有很大提高。

地下水源热泵也诞生于20世纪30年代,到1940年美国已安装了15台大型商用热泵,其中大部分是以井水为热源。1937年,日本在大型办公楼内安装了2台194kW压缩机带有蓄热箱的地下水热泵系统,其性能系数达4.4。至20世纪40~50年代,美国应用的主要是地下水地源热泵。

1941年,第二次世界大战爆发后,影响和中断了空调供暖用热泵技术的研究和发展。二战结束后,热泵技术研究及应用逐步恢复,至1950年美国已有20个厂商和10余所大学研究单位从事热泵开发研究,在当时拥有的600台热泵中,50%用于房屋供暖。地埋管式地源热泵技术初始于美国和英国。1950年前后,两国开始使用地埋管吸收地热作为热源为家用房屋供暖的小型土壤热泵。1952年,美国约出厂1000套热泵,1954年出厂约2000套热泵。由于地源热泵的日趋成熟,有力地促进了浅层地热能的广泛应用。

1957年,美国军用基地住房大量采用热泵供暖代替燃气供热方案,热泵产量达2万套,1963年年产量增加到7.6万套。至20世纪60年代初,美国安装的热泵机组已达近8万台。但当时压缩机质量尚不过关,设备费用高而影响了热泵供暖技术的推广,开始处于停顿状态。

到1964年,热泵可靠性的问题已成为一个十分严峻的问题。60年代电价持续下降,使得电加热器的应用不断增加,限制了热泵的发展。

2.迅速发展阶段

20世纪70年代,世界石油危机的出现,又引起人们对地下水源热泵的关注与兴趣,又开始大量安装与使用地下水源热泵,热泵工业进入了黄金时期。这一时期,世界各国对热泵的研究工作都十分重视,诸如国际能源机构和欧洲共同体都制定了大型热泵发展计划,热泵新技术层出不穷,热泵的用途也在不断地开拓,并广泛应用于空调和工业领域,在能源的节约和环境保护方面起着重大的作用。

热泵真正意义的商业应用也只有近20年的历史。20世纪90年代后,随着环保要求的进一步提高,美国地下水源热泵系统的应用一直呈上升趋势。美国能源信息部的调查表明:美国地下水源热泵的生产量从1994年的5924台上升到1997年的9724台。再如美国,截止到1985年全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到目前为止已安装了40万台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中在新建筑中占30%。目前,每年大约有5万套地源热泵在安装,其中开式系统占5%。美国热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入1亿美元从事开发、研究和推广工作。

欧洲一些国家由于采取积极的促进政策(包括财政补贴、减税、优惠电价和广告宣传等),热泵市场得到快速发展。1997年,欧洲发展基金会重新提出热泵发展计划。到2000年,欧洲用于供热、热水供应的热泵总数约为46.7万台,其中地下水源热泵约占11.75%。与美国的热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅部地热资源,地下土壤埋盘管的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,在家用的供热装置中地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。

3.发展趋势

近年来,各国浅层地热能的开发利用规模和发展速度都在快速增长。美国和加拿大一些大学和研究机构,对于土壤源热泵进行了较深入的试验研究,取得了一些重要数据。美国能源部(DOE)、美国环保局(EPA)及爱迪生电器学会(EEI)、国家农业电力合作公司等财团组成一家政府参与的工业设施国际集团,推广热泵供暖系统。目前从国外发展趋势看,开发利用浅层地热能,将是地热资源开发利用的主流和方向。

浅层地热能是宝贵的新型能源。与风能、太阳能等非人力控制的自然资源相比,浅层地热能是一种在开采利用时间上,可人为控制使用的可再生能源,是集热、矿、水为一体,具有洁净、廉价、用途广泛的新能源。开发利用浅层地热能可以降低常规能源消耗,减少环境污染,尤其是大气污染,又可以在发展某些相关产业经济与提高人们生活质量方面发挥作用,具有显著的商业价值。因此,引起了各国对其开发利用的重视。特别是1973年世界能源危机以来,浅层地热能的勘查与开发利用正在迅速向深度和广度发展。

4.地下水热运移数值模拟研究进展

地下水源热泵运行后,回灌井注入含水层的冷热能会在对流和热传导的作用下向抽水井运移,从而对地下水温度场产生影响,因此有必要对地下水热运移过程进行深入研究。数值模拟方法以其高效性、便捷性和灵活性等众多优势,逐渐成为研究这一问题的有效工具。鉴于此,本节对国内外地下水热运移数值模拟研究进展进行回顾,为本专题的后续研究提供基础和参考。

从20世纪70年代末开始,国外提出了许多描述含水层中热量运移的数学模型.Mercer等(1985)、Crawford等(1982)以及Mirza等对含水层储能的一些模拟技术进行了讨论。1985年.P.Heijde和Y.Bachmat等统计了当时已有的21个热运移数学模型,所有这些模型均只考虑对流和热传导作用,忽略了自然对流对热运移的影响,除了两个是三维水流耦合模型外,其余均为一维和二维的。Tsang等(1981)和Sykes等(1982)曾先后利用有限差数值模拟方法,对Auburn大学第二期地下含水层储能野外试验中水和热量运移规律进行了模拟研究,模拟结果与试验观测结果基本吻合。Buscheck等(1983)利用Aubum大学储能试验前两个周期的资料进行了二维数值模拟,并在模拟过程中考虑了自然对流的影响。Rouve等(1988)应用有限元模拟方法对德国Stuttgart大学的人工含水层季节性储能试验进行了二维数值模拟,并对含水层中各填充亚层的渗透性空间组合进行了优化。Molson等(1992)利用加拿大Ontario武装基地潜水含水层储能试验数据,对该试验过程进行了三维有限元模拟,其中考虑了自然对流影响和密度随温度的变化,该模型相对比较完整,但是试验条件比较简单,且连续性方程不尽完善。Forkeli等(1995)利用二维轴对称模型和三维有限元模型对人工含水层储能系统的储能效果进行了模拟研究,并通过对比模拟确定了效果最佳的人工储能系统。Travi等(1996)建立了二维非稳定流模型,通过数值计算给出了一个含水层剖面上温度的变化。Chevalier等(1999)应用随机游离法对多孔介质含水层储能进行了模拟研究,发现区域地下水的流动能够加速所储热能向下游含水层中扩散,从而降低所储热能的回采率。Nagano(2002)通过实验室试验和有限差分数值模拟研究得出,如果储热过程中回灌水的温度较高(>;50℃),含水层中将很可能发生自然对流现象,从而使得利用含水层储能的热回收率将受到较大影响。Chounet等(1999)利用混合有限元法对土壤中水流和热量运移进行模拟,提高了模拟精度,但所用模型是一个剖面的二维模型。

国内对地热数值模拟研究始于20世纪80年代后期,张菊明等(1982)用有限元法模拟了二维地热运移问题,并给出了有限元程序。李竞生等

李竞生,王广才1989.平顶山八矿热水补给来源及条件方式.煤炭科学研究总院西安分院科研报告.对平顶山地温场分别建立了二维和三维温度场数学模型,并采用有限元法求解,但是此模型仅是一个稳定的模型,并没有对水流场的变化规律进行研究。薛禹群等(1987)对上海储能试验建立了三维数学模型,且考虑了热机械弥散,但水流模型是一个稳定模型,用简单的解析表达式代替水流模型,没有考虑水密度随温度的变化和水动力黏滞系数随温度的变化。张菊明(1994)建立了三维地温场数学模型并提出了有限元解法,但没有考虑水流方程。胡柏耿

胡柏耿.1995.地热田中的传热传质研究.北京:清华大学博士学位论文.采用二维双孔隙介质模型模拟了地热田中传热和传质过程,并分别模拟了西藏那曲地热田和羊八井地热田的热质运移规律。任理等(1998)用交替方向有限差分法研究了土壤二维水热运移规律。何满潮等(2002)首先研究了地下热水回灌过程中渗透系数变化规律,然后针对单井、对井回灌过程中渗流场的动态变化建立了地热回灌渗流场数学模型,推导了渗透系数恒定与变化不同条件下的单井、对井回灌的理论公式。

国内外专家对于专门针对水源热泵的地下水热运移也进行了一定的模拟研究。Gringarten等(1975)对地下水均匀流动条件下的含水层热能采集进行了理论研究。通过对边界条件的简化和进行适当的条件假设,建立了对井系统的热传递数学模型,并利用该模型对不同给定条件下的热突破事件进行了定量评价,为法国的对井采能系统的合理布局设计提供了有效的指导。为了定量评价目标含水层系统中热量的运移特征,从而指导采能系统的设计,Wiberg应用有限单元法,对单纯的热传导和传导-对流并存两种不同假设条件下,理想含水层系统中地温场的分布特征进行了对比模拟研究。根据美国威斯康星州的供暖和制冷负荷要求,Andrews(1978)应用二维有限元模型,定量评价预测了水源热泵利用对地下温度场的影响。模拟结果表明,与区域地下水处于静止状态的情况相比,当区域地下水以一定的速度流动时,冬灌井周围的温度降幅相对较小,而影响半径有所增加,并且温度扰动带沿水流方向发生一定的偏移。Rahman(1984)通过对含水层条件进行假设,建立了对井回灌系统的模拟模型,并对不同的回灌量、含水层厚度、初始储层温度和井距影响条件分别进行了定量模拟研究。研究结果表明,除回灌量和井对之间的距离外,含水层厚度对热突破的时间影响比较显著;而含水层的储水率和渗透系数对热突破事件的影响并不显著。为了确定开采井群和回灌井群之间的合理布局,Paksoy(2000)应用CONFLOW程序,对含水层采能过程中热锋面的运移特征进行了定量模拟研究。通过限定开采井和回灌井的水位变幅,同时确保不出现热突破,最终确定上述约束条件下开采井群和回灌井群之间的最小距离。Tenma建立了一个理想的对井模型,利用FEHM软件对不同的开采与回灌量、水井滤管长度与位置和运行周期情况进行定量对比模拟。研究结果表明,前两个因素是控制模型温度变化幅度的主要影响因素。在国内,辛长征等(2002)利用美国地质调查局编写的HST3D程序,对一典型双井承压含水层的速度场和温度场进行了全年运行模拟,由于程序的限制,模拟时采用全年固定流量和固定温度的办法。周建伟等(2008)利用基于HST3D的Flowheat程序对武汉市某地下水源热泵系统进行了模拟,并对布井方式和抽灌组合的合理性进行了分析。张昆峰等(1998)模拟了大口径井水源热泵的冬季运行工作情况,结果表明,大口径井中的井水流动为均匀下降。

二、国内研究现状及发展趋势

1.早期热泵的应用与起步阶段(1949~1966年)

相对于世界热泵的发展,我国热泵的研究工作起步约晚20~30年左右。20世纪50年代天津大学热能研究所吕灿仁教授就开展了我国热泵的最早研究,1956年吕教授的《热泵及其在我国应用的前途》一文是我国热泵研究现存的最早文献。20世纪60年代,我国开始在暖通空调中应用发展热泵,并取得了一大批成果。1960年同济大学吴沈钇教授发表了《简介热泵供暖并建议济南市试用热泵供暖》;1963年原华东建筑设计院与上海冷气机厂开始研制热泵式空调器;1965年上海冰箱厂研制成功了我国第一台制热量为3720W的CKT-3A热泵型窗式空调器;1965年天津大学与天津冷气机厂研制成功国内第一台地下水热泵空调机组;1966年天津大学又与铁道部四方车辆研究所共同合作,进行干线客车的空气/空气热泵试验;1965年,由原哈尔滨建筑工程学院徐邦裕教授、吴元炜教授领导的科研小组,根据热泵理论首次提出应用辅助冷凝器作为恒温湿空调机组的二次加热器的新流程,这是世界首创的新流程;重庆建筑大学、天津商学院等单位对地下埋盘管的地源热泵也进行了多年的研究。中国科学院广州能源研究所等单位还多次召开全国性的有关热泵技术发展与应用的专题研讨会。清华大学、天津大学分别与有关企业结成产学研联合体,开发出中国品牌的地源热泵系统,已建成多个示范工程,越来越多的中国用户开始熟悉热泵,并对其应用产生了浓厚的兴趣。

我国早期热泵经历了17年的发展历程,度过一段漫长的起步发展阶段。其特点可归纳为:①对新中国而言,起步较早,起点高,某些研究具有世界先进水平;②由于受当时工业基础薄弱,能源结构与价格的特殊性等因素的影响,热泵空调在我国的应用与发展始终很缓慢;③在学习外国基础上走创新之路,为我国今后热泵研究工作的开展指明了方向。

2.热泵应用与发展的停滞期(1966~1977年)

这一时期正处于“十年动乱”期间,在此期间热泵的应用与发展基本处于停滞状态。该期间没有一篇有关热泵方面的学术论文发表和正式出版过有关热泵的译作和著作等;国内没有举办过一次有关热泵的学术研讨会,也没有派人参加过任何一次国际热泵学术会议,与世隔绝10余年。只有原哈尔滨建筑工程学院徐邦裕、吴元炜领导的科研小组在1966~1969年期间,坚持了LHR20热泵机组的研制收尾工作,于1969年通过技术鉴定,这是在“文革”时期全国唯一的一项热泵科研工作。而后,哈尔滨空调机厂开始小批量生产,首台机组安装在黑龙江省安达市总机修厂精加工车间,现场实测的运行效果完全达到(20±1)℃,(60±10)%的恒温恒湿的要求.这是我国第一例以热泵机组实现的恒温恒湿工程。

3.热泵应用发展的复苏与兴旺期(1978~1999年)

1978~1988年,我国热泵应用与发展进入全面复苏阶段。在此期间,为了充分了解国外热泵发展的现状与进展,大量出版有关著作,国内刊物积极刊登有关热泵的译文,对国外热泵产品进行测试与分析,积极参加国际学术交流。同时,一些国外知名热泵生产厂家开始来中国投资建厂。例如美国开利公司是最早来中国投资的外国公司之一,于1987年率先在上海成立合资企业。

1989~1999年期间,我国热泵又迎来了新的发展历程。在我国应用的热泵形式开始多样化,有空气-空气热泵、有空气-水热泵、水-空气热泵和水-水热泵等。在此期间国内已有国有、民营、独资、合资等不少于300家家用空调器厂家,逐步形成我国热泵空调器的完整工业体系,且水源热泵空调系统在我国得到广泛应用。据统计,到1999年全国约有100个项目,2万台地下水源热泵在运行。20世纪90年代初开始大量生产空气源热泵冷热水机组,90年代中期开发出地下水热泵冷热水机组,90年代末又开始出现污水源热泵系统。土壤耦合热泵的研究已成为国内暖通空调界的热门研究课题。国内的研究方向和内容主要集中在地下埋管换热器,在国外技术的基础上有所创新。

1978~1999年,中国制冷学会第二专业委员会主办过9届“全国余热制冷与热泵技术学术会议”。1988年中国科学院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。自20世纪90年代起,中国建筑学会暖通空调委员会、中国制冷学会在其主办的全国暖通空调制冷学术年会上专门增设“热泵”专题交流。

1988年,中国建筑工业出版社出版了徐邦裕教授等编写的《热泵》教材;机械工业出版社1993年出版了郁永章教授主编的《热泵原理与应用》,1997年出版了蒋能照教授主编的《空调用热泵技术及应用》,1998年出版了郑祖义博士著的《热泵技术在空调中的应用》;1994年华中理工大学出版社出版了郑祖义著《热泵空调系统的设计与创新》。1989~1999年,正式发表有关热泵方面论文270篇,热泵专利总数161项,而发明专利为77项。这些教材、著作、译著和论文的出版,专利技术的应用,推动了热泵技术在我国的普及与推广。

4.热泵技术的飞速发展时期

进入21世纪后,由于城市化进程的加快,人均GDP的增长,拉动了中国空调市场的发展,促进了热泵在我国的应用,应用范围越来越广泛,热泵的发展十分迅速,热泵技术的研究不断创新。热泵的应用、研究空前活跃,硕果累累。2000~2003年,专利总数287项,是1989~1999年专利平均数的4.9倍。2000~2003年间发明专利共119项,是1989~1999年发明专利平均数的4.25倍。2000~2003年,热泵文献数量剧增,如2003年文献数是1999年文献数的5倍。全国各省市几乎都有应用热泵技术的工程实例。热泵技术研究更加活跃,创新性成果累累。在短短的几年中有3项世界领先的创新性成果问世,包括:同井回灌热泵系统,土壤蓄冷与土壤耦合热泵集成系统,供寒冷地区应用的双级耦合热泵系统。

5.地源热泵的应用与研究

我国地源热泵研究起步于20世纪80年代,首先是一些高校和科研机构对地源热泵的相关技术进行了专题研究。如北京工业大学对深层地热水进行了研究,并设计了若干垂直埋管和水平埋管的土壤源热泵试验系统;哈尔滨工业大学的水环热泵空调系统应用基础的研究与评价,土壤蓄冷与土壤耦合热泵集成系统的数值模拟与实验研究,土壤源热泵系统中地埋管的热渗耦合理论与关键技术研究;湖南大学建设了水平埋管土壤源热泵系统等。另外,青岛建筑工程学院、山东建筑工程学院、上海同济大学、天津商学院、重庆建筑大学等大学也进行了该方面的研究。近年来国内数所高等院校开展了土壤源热泵系统和水源热泵系统的试验研究,并取得了一些重要成果。

目前,我国浅层地热能的开发利用研究发展很快,经过近二十几年的研究和开发,热泵技术在我国已取得了很大进步,尤其是地源热泵技术发展迅速。已经初步建立了各类地下水源热泵系统的水源井施工技术和技术要求,井群设计和计算方法、水质评价和处理方法及环境评价方法等。

截止到2008年10月底,我国浅层地能应用面积超过1×108m2(《地源热泵》杂志2009年5月刊)。已遍及北京、上海、天津、河北、河南、山西、辽宁、四川、湖南、西藏、新疆等地。应用的建筑类型包括宾馆、住宅、商场、写字楼、学校、体育场(馆)、医院、展览馆、军队营房、别墅和厂房等,应用前景广阔。

6.浅层地热能的开发利用与发展趋势

浅层地热能的开发利用涉及城市能源结构、环境保护和提高人民生活质量的重大课题。特别是浅层地下水源热泵和土壤源热泵的可再生能量采集系统是解决上述重大课题的关键,其能量采集基本不受使用地域和四季气候的影响。浅层地热能作为建筑物的冷热源初始采集更具有推广价值。

浅层地热能的开发利用不仅受到学术界和企业界的关注,政府也更加重视。《中华人民共和国可再生能源法》明确指出:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术发展的优先领域。国家财政支持可再生能源的资源调查、评价和相关信息系统建设。该法的实施为浅层地热能的调查、评价和开发提供了强有力的依据和保障。国土资源部、中国地质调查局等部门多次召开浅层地热能勘查开发经验交流会、技术研讨会,并编制出台浅层地热能勘查评价规范,做到了浅层地热能勘查开发有标准可依。近年来,随着国家加大建设“资源节约型、环境友好型”社会的力度,实现节能减排目标,国家从中央财政安排专项资金用于支持可再生能源建筑应用示范和推广,财政部、建设部已批准下达3批包括浅层地热能利用的可再生能源建筑应用示范推广项目。各地也相继出台支持开发利用浅层地热能项目。如2006年5月31日,由北京市发改委联合市水利局、国土局等9个委办局联合发文对采用地下水源热泵系统实现供暖和制冷项目按每平方米35元的标准进行补贴,对采用地源热泵系统实现供暖和制冷项目按每平方米50元的标准进行补贴;沈阳市发布的《关于地源热泵系统建设和应用工作的实施意见》中要求在沈阳市三环内的455km2核心区范围内,对符合应用地下水热泵技术的409km2范围内的建筑物,原则上都要采用地下水源热泵技术规划研究。

进入21世纪,伴随中国经济的迅速发展,人们对生活品质和舒适性要求的不断提高,城市能源结构的改变,建筑市场的巨大,为浅层地热能开发利用技术的推广创造了前所未有的机遇。国内在热泵理论研究、试验研究、产品开发和工程项目的应用诸方面都取得了可喜的成果。

目前,我国已经建立了比较完善的开发利用浅层地热能的工程技术、机械设备、监测和控制系统,但回灌技术中的水质控制和回灌对储层及用水管的影响评价,堵塞井的处理技术,对井群采灌系统温度场、化学场和压力场的模拟计算方法,参数采集方法等尚在研究之中。

地热与浅层地热资源及其利用

陈建平

(北京市国土资源局)

摘要:2008年北京奥运,引发了一场绿色革命,国人对改善环境保护环境的意识空前提高,并已成为一项十分重要的自觉行动。为了实现绿色奥运,北京市采取措施,大力发展清洁能源。地热是一种良好的清洁能源,本文重点对深层地热和浅层地热及其利用进行积极的探讨。

引言

北京市开发利用地热资源(温泉)历史悠久,利用地热进行采暖已经多年。1999年时,为了改善环境、支持申奥,大力改善能源结构,地热等清洁能源的利用被列入了城市能源发展规划,得到重视。在市政府地热采暖示范工程顺利进行的同时,浅层地温的利用、研究,在北京地区取得了重大进展。低温地热的梯级利用技术研究项目取得的成果,进一步扩大了地热资源利用的范围。

深层地热:指传统意义上的地热,国际规范温度大于25℃。地热有多种形态,其中地热水是集“热、矿、水”三位一体的宝贵的自然资源,是一种清洁可持续利用的能源。北京工业大学、郭庄北里、北京地质勘察技术院等地热采暖示范工程的试验成功,对改善能源结构、发展可再生能源,将产生积极的意义和影响。采暖示范项目在地热回灌与地热热泵技术的应用上,以及地热保护与梯级利用、综合利用技术方面,也具有十分重要的意义。

示范工程试点之一的崇文区郭庄北里小区,6栋居民楼数万平方米的建筑采用地热采暖,彻底解决了该小区由于历史原因造成的20多年没有供暖的问题,实现了地热采暖多级换热、全封闭循环、热泵技术应用、地热采暖尾水100%回灌的试验目标,有效保护了地热资源。项目的试验的成功,受到市政府的高度重视。

浅层地热:是低温地热能的另一种形式,它涉及从地下常温层以下至一定深度以内(北京地区约为150m以浅)的浅层地热资源,包括土壤中和地下水中的热能等,大大地拓展了地热应用的范畴。在地下恒温层以上(特别是接近地表)的土壤地层中,还包含太阳能辐射到地表所形成的热能,优点是利用中操作简单、投入较少,但这部分辐射热能受外界条件的影响较大,不很稳定,其热能利用的效果与热量储量不能与地热(包括地温)相比。

国际上热泵技术的利用发展已经数十年,国内的研究是从20世纪90年代开始的。近年来,北京地区热泵技术利用发展较快,从2000年开始到2004年,仅3年多的时间,全市热泵供暖面积已经超过500万m2。浅层地热的利用在热泵技术的发展中占有很大比例,说明了其具有的独特优势和特点。通过各种试验得出的技术和经济分析表明,它将在未来推动我国低品位能源的应用。

1国外地热能利用的发展情况

1.1法国

深层地热:法国本土的地热资源以≥50℃的低焓地热水为主,法国对地热的利用发展于20世纪80年代。法国以供水井和回灌斜井组成的“对井”而著称;两口地热井在地面上相距10m,但在千余米地下的距离,可达400~1000m;1998年的统计资料,巴黎仍有41个区域供暖的“对井”机房在运行,至2005年时数量略有减少。

浅层地热:对于更低温的地热能,法国使用地热热泵进行供暖和制冷。如巴黎塞那河畔的法国电视台,钻井仅几百米深,地下水温可达到23℃,被用于地热供暖系统。

1.2德国

深层地热:德国地热利用以采暖为主,特点是:建立相对集中的大型供热站。由于热泵用电,引用了“季节特性系数”,即供热量与消耗电量之比,一般为5~7的范围;此外,全年热量输出的85%使用地热,全年热量的15%采用由石油或燃气燃烧器形成的辅助热源,主要解决峰值供暖负荷。到2002年,已有9个集中供热站,其地热井深度从1100~2400m不等,总供热量136MW。用于采暖、温室等;

浅层地热:德国广泛使用分散的浅层地热能及小型地热热泵,供采暖之用;地下换热器包括水平的热收集器、垂直的地下换热器,或地下水换热器等;据介绍,仅德国北部,就有有4.5万根地下换热器。据报告,到1999年底止,德国全国至少安装有1.8万台平均制热量19kW的热泵机组。由于在利用中德国多使用双U型地埋管,如以每台19kW机组配以3根深100m的地下换热器,推算1999年底之前,德国应至少有5.4万根的地下换热器。

德国的供暖系统,习惯于使用热水/冷水供热制冷;德国的供暖水温标准是75/65℃,采用的地板采暖水温仅仅38℃。由于一般住宅夏天并不使用空调,土壤温度靠自然恢复,冬季热泵的水源侧水温常常降到0℃,负荷侧温度38℃,所以其热泵COP值也达4以上。

2国内地热利用的发展情况

2.1地热供暖

传统意义上的低温地热水的概念是:温度范围从25~90℃,主要来自深部地层。

20世纪70年代开始,北京地区地热采暖主要利用60℃多度地热水进行直供。由于北京地区的地热水温度多在40~60℃范围,所以当时尝试用60℃的地热水通到暖气片中,为达到供暖效果,依靠加大暖气片的片数作保证。而由于当时条件的限制(建筑结构、保温质量、供暖管道材质等),往往在最冷天时室温不够高,供暖效果经常不能保证,或者需要进行调峰处理。

随着近代建筑节能技术的发展,居住建筑供暖热指标已逐渐下降(约20W/m2左右),因此进一步降低供暖水温度,成为一种趋向和可能。由于供暖技术的进步,如采用冷热两用型的风机盘管机组,可以大大降低所要求的热源温度。实际运行的供暖水温经常在45℃左右,甚至更低。30~35℃的地板采暖供热温度,也是目前住宅或公共建筑可以接受的可行的温度。

因此,北京地区40~60℃的地热水,也将发挥重要的能源作用。地热热泵技术的发展,将会很大程度的利用35~40℃的地热采暖尾水。预计在未来能源的构成中,低温地热能的利用,会占越来越大的比重。

2.2地热热泵

地热热泵,按水源侧能承受的工作温度和负荷侧供热制冷温度,可以分为两种类型:冷热两用型热泵、升温型热泵;

35℃,是冷热两用型热泵的可承受的水源侧最大温度;其负荷侧供回水温度,冬季50/43℃,夏季7/12℃;北京工业大学地热供暖示范工程课题组在2000年初,引进了当时北京第一台国外厂家生产的,能承受35℃地热尾水温度的冷热两用型水-水型热泵及水风型热泵进行实验;后来又在中试工程中,和大型工厂工程进一步使用,都取得了很好的效果。用热泵提升尾水温度的做法,在实际利用中具有十分广泛和积极的意义。

55℃,是升温型热泵所能承受的水源侧最大温度;升温型热泵,仅供冬季负荷侧供回水温度85/70℃,也可以为75/65℃,70/60℃以满足民用采暖的需要。

经在某工程测试的数据计算,热泵运行最低效率为2.7~3.4。

2.3地热的梯级利用

不论是哪种温度的地热水,梯级利用都是一个最佳的利用方案。所谓梯级利用,就是按照用户终端需要的供热水温,从高到低排序;高能高用,温度适用,分配得当,各得其所,通过梯级利用,可有效提高地热资源利用率。

北京申办2008年奥运会成功以来,由于地质勘查钻井技术的进步,大大加强了钻井的能力与深度,北京地热水的温度有了新的提高,最高达到89℃。

当然,不论地热水提供的温度多高,供暖所需温度和用户所需要的水温,仍然是一定的。地热热泵技术的利用与设备水平的不断进步,有助于进一步提高地热资源的利用率。

2.4地热梯级利用的实例

根据北京工业大学地热供暖示范项目组的测试和阶段总结,该校使用地热供暖的初投资,与常规集中供热区域锅炉房的价格基本相当;而运行费用,经在2002,2004年两次分别复测,总效率约在5.79~6.54范围内;费用低于天然气。

在北京热泵技术的应用研究与发展中,研究工作已有10多年的历史。据不完全统计,水源、地温热泵的利用发展超过一般的想像,仅在北京地区及周边,已安装的土壤源地埋管换热器约几千根以上,除一般用于小型别墅外,一些大型的工程也在尝试这种可再生能源的利用试验(初步试验的效果理想)。

3国内浅层地热能供热的发展

3.1技术可靠性与基础工作

在土壤源热泵系统的设计中,从土壤中吸和放的热量一定要平衡,才能保持可靠、稳定的运行,因此,逐时的负荷计算很重要。如果冬夏逐月总制热量和总制冷量不平衡,以及冬夏季峰值负荷不平衡,超过一定限度时,会出现一些问题,比如:在冬天,热泵水源侧温度达到-2~-4℃,低于设计值,这时,热泵制热量减少,结果可能不能保证供暖温度;而在夏天,由于夏季负荷过大,热量散不出去,水源侧水温升得很高,会造成热泵停机。这时,就得要考虑辅助一个冷却塔;如果用户要求只需供热,不需供冷;或要求只需供冷,不需供热;则在使用这种系统时,要有足够的补救措施。

地热供暖及各种热泵供暖系统,梯级利用的方案示意图如下:

浅层地热能:全国地热(浅层地热能)开发利用现场经验交流会论文集

大地导热系数包括:塑料管材,回填料,土壤在内的综合的导热系数,还与现场的土壤含水量等因素有关,也只能在现场测定;研究表明,仅就土壤和岩石两类土壤材料的导热系数来说,其数量级可以由0.4W/(m·℃)至6.0W/(m·℃),随其密度及湿度有所不同;常遇到的土壤材料的导热系数,会相差两倍以上;如果大地导热系数相差两倍,在一定的条件下,设计管长,可以减少大约20%;同时,在提高回填材料的导热系数上,多年来国外都做了不少改进。

大地导热系数的测定,要在没有被热扰动过的土壤中现场进行。依据国际上的大地导热系数模拟装置的原理,大地导热系数模拟装置已测出多种数据;该装置由北工大地热供暖课题组,在研究工作中,自行研制、设计和施工;经过了实验检验;并且经改进后,还扩大了其功能。

3.2合理的热泵选择

一是根据当地的地质与水文地质条件、经济能力、政策导向等因素,进行合理的选择,已采用效率高、费用可以接受的热泵方式及设备。

二是按照低的进水温度选热泵,以免制热量不够;由国外某知名的热泵厂家给出的数据表明,该热泵水源侧供水温度3.9℃时的制热量,比14℃时的制热量,大约小一倍;并且样本上说明,不鼓励在该低温工况下运行。

三是要选能承受冬季的低温,夏季的高温的土壤源专用热泵;能承受水源侧进水温度-5℃,和43℃的热泵;不仅在自控上体现了保护温度的不同,在制冷系统上,还应该有必要的措施。

3.3严格的施工技术

(1)要有定点专用厂家生产关键的设备与管件材料:例如,热泵主机的性能稳定,U型管的底部接头、双U型管的上部接头等,是导致水流阻力加大的主要部位。

(2)井孔的回填材料和方法:回填材料影响导热系数;要使用砂浆泵加压灌浆法,可以保证较高的导热系数。

(3)施工单位要有相应的资质,施工人员(包括电熔焊工和下管,回填工)要进行培训,并有合格证书。

(4)杜绝低劣,粗放的设计,施工工艺,才能保证效果。

3.4长期的效果监测

根据大地导热系数的测定结果,在设计、工完成后,可以进行使用20~50年的效果模拟预测,主要是确定热泵水源侧,冬夏的最高,最低温度的逐年变化;这样就可以知道其制热量和制冷量的逐年变化;一般说,当冬夏热冷负荷基本一样时,水源侧的冬夏的最高,最低温度也还会逐年上升,这对于北方的供暖有利。

3.5规范化管理和许可证制度

国家应制定统一标准,包括:地埋管的钻孔,设计,施工规范等。我国是一个大国,任何事情,无序发展,势必造成混乱;由于钻孔的高利润,只要买个小钻机,个体的钻孔很容易实现;据调查,有的工地,钻孔的斜度,可以与相距4~6m的临近钻孔相交汇。地下工程是隐蔽工程,如果无序进行,对于其他地下设施,势必会造成影响;

政府有关部门,应制定地热地源发展规划。北京是世界最大的城市之一,热泵技术的发展(包括土壤源和地下水源等)应在浅层地温条件调研的基础上,由有关部门提出科学的发展规划。为加强管理,应制定法规,以规范这一技术的有序发展。

对于土壤源热泵系统,可能带来的土壤环境保护问题,应有所准备;要有序钻孔,以保护一个清洁的地球。

4北京地区深层地热、浅层地热的发展与政策

4.1深层地热

为科学引导地热的发展,北京已经编制2006—2020年地热资源可持续利用发展规划。近年内的发展重点,一是进一步探讨为加强地热资源的科学管理,实行保护性限量开采的有关政策。市政府有关部门已经发出通知,支持地热供暖项目的发展,但要求采取回灌措施,保证将采暖弃水进行回灌;强调温泉休闲度假旅游项目的发展,按不同用途进行循环过滤、中水处理、综合利用,实现零排放的目标。二是支持延庆生态农业县的无烟城建设,提高当地的旅游品牌。例如延庆县城人口不足10万,按规划目标,总建筑面积约500万m2,当地地热埋深2000m,可打出70℃左右、日采3000m3地热水,具有发展地热供暖的地热资源条件。实现地热供暖,可为当地减少50%左右以上的燃煤锅炉。

4.2浅层地热

浅层地热的开发利用,需要具备一定的地质和水文条件,才能取得较高的效率,达到理想的供暖/制冷效果。为加强地热资源的开发管理,规范开发中的市场行为,应该立项进行全市浅层地热资源情况和水文地质条件的调查,并在调查的基础上,划定适合于不同热泵技术发展的条件和范围,编制相关的发展规划,以便引导浅层地热能科学合理的利用。

4.3地质环境的监测

加强对浅层地热利用的管理和规范,特别是保证水源热泵系统中地下水资源的回灌、水质检测与地质环境监测,十分重要,应引起有关部门的足够重视。

4.4发展前景

鉴于改善能源结构和节约资源的需要,北京市为加强浅层地热资源等可再生能源的利用,提出未来几年内发展1亿m2供暖面积的目标。这一目标的提出,完全体现了北京地区发展清洁能源和节约资源的紧迫性。为实现这一目标,在市发改委的牵头下,市政府9个委办局共同研究、制定了相关的扶持政策,加强对地热与浅层地温资源利用的支持,引导地热于浅层地源热泵项目,给予一定数量的项目改造或建设资金的补助政策。预测在这一政策的促进下,北京市地热与浅层地热等可再生能源的利用会有一个快速的发展。

参考文献

[1]丁良士等.从深层到浅层地热供热/制冷看北京2008奥运场馆能源建设.2003

[2]北京市地质矿产局地热处.北京市地热资源2001—2010年可持续利用发展规划.1999

[3]陈建平.北京地热资源管理研究.2002.北京地热国际研讨会论文集,北京:北质出版社,273~283

相关推荐

2021年地热地暖 🌼 大全,土巴兔能...

1、2021年地热地暖大全,土巴兔能为当地装修带来什么2021 年地热地暖大全地热地暖是一种舒适、节能、环保的...

2019年地热安装价格一览表,材料新行情下...

1、2019年地热安装价格一览表,材料新行情下土巴兔的价格是多少2019 年地热安装价格一览表(土巴兔价格参考...

🐠 2020年地热取暖大全,土巴兔的...

1、2020年地热取暖大全,土巴兔的装修秘籍是什么2020 年地热取暖大全土巴兔装修秘籍地热取暖是一种节能环保...

土巴兔的地热取暖服务真的免费吗

1、土巴兔的地热取暖服务真的免费吗否,土巴兔的地热取暖服务并非完全免费。土巴兔提供的地热取暖服务分为两...

装修案例


装修知识